A mechanism for ATP-sensitive potassium channel diversity: Functional coassembly of two pore-forming subunits.
نویسندگان
چکیده
ATP-sensitive potassium channels are an octomeric complex of four pore-forming subunits of the Kir 6.0 family and four sulfonylurea receptors. The Kir 6.0 family consists of two known members, Kir 6.1 and Kir 6.2, with distinct functional properties. The tetrameric structure of the pore-forming domain leads to the possibility that mixed heteromultimers may form. In this study, we examine this by using biochemical and electrophysiological techniques after heterologous expression of these subunits in HEK293 cells. After the coexpression of Kir 6.1 and Kir 6.2, Kir 6.1 can be coimmunoprecipitated with isoform-specific Kir 6.2 antisera and vice versa. Coexpression of SUR2B and Kir 6.2 with Kir 6.1 dominant negatives at a 1:1 expression ratio and vice versa led to a potent suppression of current. Kir 6.1, and Kir 6.2 dominant negative mutants were without effect on an inwardly rectifying potassium channel from a different family, Kir 2.1. Single-channel analysis, after coexpression of SUR2B, Kir 6.1, and Kir 6.2, revealed the existence of five distinct populations with differing single-channel current amplitudes. All channel populations were inhibited by glibenclamide. A dimeric Kir 6.1-Kir 6.2 construct expressed with SUR2B had a single-channel conductance intermediate between that of either Kir 6.2 or Kir 6.1 expressed with SUR2B. In conclusion, Kir 6.1 and Kir 6.2 readily coassemble to produce functional channels, and such phenomena may contribute to the diversity of nucleotide-regulated potassium currents seen in native tissues.
منابع مشابه
Molecular physiology of neuronal K-ATP channels (review).
ATP sensitive potassium (K-ATP) channels are widely expressed in many cell types including neurons. K-ATP channels are heteromeric membrane proteins that consist of two very different subunits: the pore-forming, two-transmembrane spanning potassium channel subunit (Kir6) and the regulatory, 17 transmembrane spanning sulphonylurea receptor (SUR). This ensemble--joined together in a 4:4 stoichiom...
متن کاملHow ATP Inhibits the Open KATP Channel
ATP-sensitive potassium (K(ATP)) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time...
متن کاملSulfonylurea Receptors Type 1 and 2A Randomly Assemble to Form Heteromeric KATP Channels of Mixed Subunit Composition
ATP-sensitive potassium (K(ATP)) channels play important roles in regulating insulin secretion, controlling vascular tone, and protecting cells against metabolic stresses. K(ATP) channels are heterooctamers of four pore-forming inwardly rectifying (Kir6.2) subunits and four sulfonylurea receptor (SUR) subunits. K(ATP) channels containing SUR1 (e.g. pancreatic) and SUR2A (e.g. cardiac) display d...
متن کاملThe therapeutic agents that target ATP-sensitive potassium channels.
ATP-sensitive potassium (K(ATP)) channels are a major drug target for the treatment of type-2 diabetes. K(ATP) channels are ubiquitously expressed and link the metabolic state to electrical excitability. In pancreatic β-cells, K(ATP) channels are crucial in the regulation of glucose-induced insulin secretion. Also, K(ATP) channels are involved in the protection against neuronal seizures and isc...
متن کاملBiophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane
Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 2 شماره
صفحات -
تاریخ انتشار 2001